Insegnamento: Chimica Organica

Organic Chemistry

Docente ProfF. Antonio Fiorentino, Severina Pacifico

Anno 2° anno

Corso di studi Corso di laurea in Scienze Biologiche

Tipologia Attività di base

Crediti 9

SSD CHIM/06
Anno Accademico 2016/2017
Periodo didattico Primo semestre

Propedeuticità Chimica generale ed inorganica

Frequenza Non obbligatoria

Modalità di esame Prova scritta e orale

Sede Polo Scientifico, Via Vivaldi 43 – Caserta – DISTABIF

Organizzazione della

didattica

Lezioni frontali, esercitazioni, attività pratiche in laboratorio

Obiettivi formativi

Acquisire i concetti fondamentali dei composti del carbonio nonché i meccanismi di reazione dei composti organici, il chimismo dei gruppi funzionali, la stereochimica e le caratteristiche dei composti naturali di interesse biologico. Il corso si propone di fare acquisire allo studente la consapevolezza dell'importanza della sicurezza in laboratorio, così come le conoscenze teoriche e le abilità pratiche nelle fondamentali operazioni di laboratorio, che riguardano la sintesi, l'isolamento, la purificazione e la caratterizzazione di composti organici.

The aim of this course is to describe the fundamental principles of the organic chemistry as well as the reaction mechanisms of the organic compounds, the chemism of functional groups, the stereochemistry and the features of biologically active natural products. The purpose of this course is to make students aware of the importance of safety in experimental practice as well as to convey knowledge and ability about the fundamental laboratory operations, which include isolation, purification and characterization of organic compounds

Prerequisiti

Conoscenze e abilità fornite dal corso di Chimica generale ed inorganica

Knowledges and skills furnished by the course of General and Inorganic Chemistry

Contenuti del corso

Struttura, reattività e sintesi dei composti organici: alcani ed cicloalcani; alcheni; gli alchini: introduzione alla sintesi organica; stereochimica; alogenuri alchilici: sostituzioni nucleofile ed eliminazioni; benzene e aromaticità: sostituzione elettrofila aromatica; alcoli e fenoli; eteri, epossidi, tioli e solfuri; aldeidi e chetoni: reazioni di addizione nucleofila; acidi carbossilici e nitrili; derivati degli acidi carbossilici: reazioni di sostituzione nucleofila acilica; reazioni di alfa-sostituzione al gruppo carbonilico; reazioni di condensazione dei composti carbonilici; ammine ed eterocicli; biomolecole: carboidrati, amminoacidi, peptidi e proteine, lipidi, acidi nucleici.

Structure, reactivity and synthesis of organic compounds: alkanes and cycloalkanes, alkenes; alkines: introduction to organic synthesis; stereochemistry; alkyl halides: nucleophilic substitutions and eliminations; benzene and aromaticity: aromatic electrophilic substitution; alcohols and phenols; ethers, epoxides, thiols and sulfides; aldehydes and ketones; nucleophilic addition; carboxyl acids and nitriles; carboxyl acid derivatives: nucleophilic acyl substitution; alpha-substitution to the carbonyl group; condensation reactions of carbonyl compounds; amines and heterocyclic compounds; biomolecules: carbohydrates, amino acids, peptides and proteins, lipids, nucleic acids.

Programma dettagliato Struttura elettronica e legame - Acidi e basi. Struttura dell'atomo. Legami. Orbitali atomici. Teoria degli orbitali molecolari. Il carbonio. Ibridazione degli orbitali, lunghezza di legame, forza di legame, angoli di legame. Legami singoli, doppi e tripli. Momenti dipolari delle molecole. Struttura di carbocationi, carbanioni e radicali. Acidi e basi. Influenza della struttura sul pKa. Effetto del pH sulla struttura dei composti organici. Acidi e basi di Lewis.

> Nomenclatura, proprieta fisiche e rappresentazioni strutturali Nomenclatura degli alcani e dei cicloalcanii. Nomenclatura dei sostituenti alchilici. Nomenclatura di alogenuri alchilici, eteri, alcoli, ammine. Struttura degli alogenuri alchilici, eteri, alcoli, ammine.

> Alcani Struttura. Conformazione degli alcani: rotazione intorno al legame carbonio-carbonio. Proiezioni di Newman. Strutture a cavalletto. Conformazioni del cicloesano. Conformazione di cicloesani monosostituiti.

Conformazione di cicloesani di sostituiti. Alcheni: struttura, nomenclatura

Formula molecolare e grado di insaturazione. Nomenclatura. Struttura. Isomeria cis-trans. Sistema di nomenclatura E/Z: regole di Chan, Ingold e Prelog. Reattivita degli alcheni. Cinetica e termodinamica.

Reazioni degli alcheni Addizione di acidi alogenidrici. Carbocationi: struttura, stabilita e trasposizione. Struttura dello stato di transizione. Regioselettivita delle reazioni di addizione elettrofila. Addizione di acqua e alcoli. Addizione di alogeni. Idroborazione-ossidazione. Addizione di acidi alogenidrici in presenza di perossidi. Idrogenazione. Stabilita degli alcheni.

Stereochimica Isomeri cis-trans. Chiralita: stereo centri e isomeri con carbonio asimmetrico. Rappresentazione di enantiomeri. Sistema di nomenclatura R/S. Attivita ottica. Isomeri contenenti più di un carbonio asimmetrico. Reazioni di composti chirali. Separazione di enantiomeri. Stereochimica delle reazioni: reazioni regioselettive, stereoselettive e stereospecifiche. Stereochimica delle reazioni di addizione elettrofila agli alcheni.

Alchini Nomenclatura. Struttura e proprietà. Reattività. Addizione di acidi alogenidrici e addizione di alogeni. Addizione di acqua. Addizione di borano. Idrogenazione. Acidita degli alchini terminali. Ioni acetiluro. Introduzione alla sintesi multistadio.

Delocalizzazione elettronica e risonanza: benzene e dieni Elettroni de localizzati: struttura del benzene. Legami del benzene. Contributo delle strutture limite di risonanza all'ibrido di risonanza. Energia di risonanza. Carbocationi allilici e benzilici. Radicali allilici e benzilici. Effetto della delocalizzazione elettronica sul pKa. Stabilita secondo la teoria degli orbitali molecolari: orbitali HOMO e LUMO. Stabilita dei dieni: dieni coniugati.

Reazione di sostituzione nucleofila Reattivita degli alogenuri alchilici. Meccanismo di una reazione SN2. Fattori che influenzano le reazioni SN2. Reversibilita di una reazione SN2. Meccanismo di una reazione SN1. Fattori che influenzano le reazioni SN1. Stereochimica delle reazioni SN2 e SN1. Alogenuri benzilici, allilici, arilici e vinilici. Competizione fra reazioni SN2 e SN1

Reazione di eliminazione Reazione E2. Regioselettivita. Reazione E1. Competizione fra reazioni E2 ed E1. Stereochimica delle reazioni E2 ed E1. Eliminazione da composti ciclici. Competizione tre sostituzione ed eliminazione. Le reazioni di sostituzione ed eliminazione nella sintesi organica. Competizione tra reazioni intermolecolari e intramolecolari.

Reazioni di alcoli, eteri, epossidi e dei composti contenenti zolfo. Composti organometallici Reazione di sostituzione degli alcoli. Trasformazione degli alcoli in alogenuri alchilici. Trasformazione degli alcoli in esteri solfonici. Reazione di eliminazione degli alcoli: disidratazione. Reazioni di sostituzione degli eteri. Reazioni degli epossidi. Tioli e solfuri. Composti organometallici

Aromaticita. reazioni del benzene Criteri per l'aromaticita. Idrocarburi aromatici. Composti eterociclici aromatici. Ioni aromatici. Conseguenze chimiche dell'aromaticita. Antiaromaticita. Nomenclatura di benzeni monosostituiti. Reattivita del benzene. Reazione di sostituzione elettrofila aromatica: alogenazione, nitrazione, solfonazione, acilazione di Friedel-Crafts, acilazione di Friedel-Crafts. Alchilazione del benzene mediante acilazione-riduzione. Reazioni dei benzeni sostituiti Nomenclatura di benzeni di sostituiti e polisostituiti. Reazioni dei sostituenti del benzene. Effetto dei sostituenti sulla reattivita. Effetti dei sostituenti sull'orientazione. Effetti dei sostituenti sul pKa. Sintesi di benzeni trisostituiti. Sintesi di benzeni sostituiti mediante Sali di arendiazonio.

Composti carbonilici: sostituzione nucleofila acilica Nomenclatura, struttura e proprieta degli acidi carbossilici e derivati degli acidi carbossilici. Reazione di sostituzione nucleofila acilica: scala di reattivita, meccanismo. Reazioni di alogenuri acilici, anidridi, esteri. Idrolisi acidocatalizzata degli esteri. Idrolisi basica degli esteri. Reazioni degli acidi carbossilici. Reazioni delle ammidi. Idrolisi dei nitrili. Sintesi dei derivati degli acidi carbossilici.

Composti carbonilici: addizione nucleofila acilica Nomenclatura e reattivita di aldeidi e chetoni. Reazioni con carbanioni. Reazioni con idruro. Sintesi di immine ed enammine. Idratazione di aldeidi e chetoni. Emiacetali e acetali. Addizione ad aldeidi e chetoni α , β -insaturi.

Composti carbonilici: reazioni al carbonio α Acidita degli idrogeni α . Tautometria chetoenolica. Reazioni di enoli e ioni enolato. Alogenazione del carbonio α di aldeidi e chetoni. Alogenazione del carbonio α di acidi carbossilici: reazione di Hell-Volhard-

Zelinski. Utilizzo di LDA. Alchilazione al carbonio α : reazione di Stork. Reazione al carbonio β : reazione di Michael. Condensazione aldolica. Disidratazione degli aldoli. Addizione aldolica mista. Condensazione di Claisen, Condensazione di Claisen mista. Reazioni di condensazione e dio addizione intramolecolare. Decarbossilazione di β -chetoacidi. Sintesi malonica. Sintesi acetoacetica.

Reazioni di ossidazione e riduzione Reazioni di riduzione. Ossidazione degli alcoli. Ossidazione di aldeidi e chetoni. Ossidazione degli alcheni con perossiacidi. Ossidrilazione degli alcheni. Scissione ossidativa di 1,2-dioli. Scissione ossidativa degli alcheni.

Ammine Nomenclatura. Inversione delle ammine. Proprieta acido-base. Reazioni delle ammine. Sintesi delle ammine. Eterocicli aromatici a cinque e a sei termini.

Carboidrati Classificazione. Notazione D e L. Configurazione degli aldosi e di chetosi. Reazioni redox di monosaccaridi. Struttura ciclica dei monosaccaridi. Stabilita del glucosio.

Mutarotazione. Zuccheri riducenti. Reazione di Kiliani-Fisher. Acetilazione. Metilazione. Disaccaridi e polisaccaridi.

Amminoacidi Classificazione e nomenclatura di amminoacidi. Configurazione degli amminoacidi. Proprieta acido-basiche. Punto isoelettrico. Separazione di una miscela racemica di amminoacidi. Legami peptidici e ponti disolfuro. Sintesi dei peptidi: gruppi protettivi. Sintesi dei peptidi in fase solida.

Lipidi Acidi grassi. Cere. Grassi e oli. Membrane. Trigliceridi, fosfolipidi, steroidi *Nucleosidi, nucleotidi e acidi nucleici* Nucleosidi e nucleotidi. Acidi nucleici. DNA e RNA.

Il laboratorio di chimica organica Norme di sicurezza in laboratorio – cifre significative – precisione e accuratezza – Filtrazione – Estrazione – Cristallizzazione – Cromatografia: principi generali, meccanismi di separazione, cromatografia su strato sottile e su colonna.

ESPERIENZE PRATICHE DI LABORATORIO

- 1) Estrazione e determinazione delle proprietà indicatrici di pigmenti vegetali
- 2) Estrazione di principi attivi da farmaci analgesici
- 3) Separazione di composti organici mediante cromatografia su strato sottile
- 4) Separazione di sostanze organiche in miscela tramite estrazione liquido-liquido
- 5) Sintesi del paracetamolo
- 6) Condensazione aldolica
- 7) Zuccheri riducenti e non riducenti: Saggio di Fehling-Benedict ed idrolisi del saccarosio

Testi di riferimento

Bruice CHIMICA ORGANICA – EdiSES
McMurry CHIMICA ORGANICA – PICCIN
Brown, Foote, Iverson, Anslyn CHIMICA ORGANCA – EdiSES

Curriculum docente: prof. Antonio Fiorentino

Attuale posizione ricoperta

Il professore Antonio Fiorentino attualmente ricopre il ruolo di Professore Ordinario di *Chimica Organica* (CHIM/06) presso il Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche - DiSTABiF della Seconda Università degli Studi di Napoli.

Carriera accademica

Il professore Antonio Fiorentino ha conseguito il titolo di Dottore di Ricerca in Scienze Chimiche presso l'Università Federico II di Napoli il 7 luglio 1994. Il 1 novembre 1995, in seguito a concorso, ha avuto la nomina a Ricercatore Universitario per il raggruppamento disciplinare di Chimica Organica (C05X) presso la Facoltà di Scienze MM. FF. NN. della SUN. Vincitore della valutazione comparativa per la copertura di n 1 posto di professore di seconda fascia (SSD CHIM/06), il 1 novembre 2002 è stato chiamato a ricoprire il ruolo di professore associato di Chimica Organica presso la Facoltà di Scienze MM. FF. NN. della SUN. Nel mese di dicembre 2013 ha conseguito l'abilitazione nazionale al ruolo di professore di prima fascia nel settore concorsuale 03/C1 (Chimica organica). In seguito a valutazione positiva, è stato chiamato dal Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche della SUN a ricoprire il ruolo di Professore Ordinario di Chimica Organica dal 29 ottobre 2015.

Attività didattica

Il prof. Fiorentino, fin dall'immissione nel ruolo di Ricercatore Confermato (A.A. 1999/00) ha ricoperto vari insegnamenti del S.S.D. CHIM/06 presso il corso di laurea quinquennale in Scienze Biologiche, presso i corsi di Laurea Triennale in *Scienze Biologiche* e in *Biotecnologie* e presso i corsi di Laurea Magistrale in *Biologia* e in *Biotecnologie industriali ed alimentari* e *Farmacia* Attualmente è titolare degli insegnamenti di *Chimica organica* I per il corso di laurea magistrale in Farmacia, di *Chimica organica* per il corso di laurea in Scienze Biologiche, di *Chimica Bioorganica* per il corso di laurea magistrale in Biologia.

Incarichi accademici

Presidente del Consiglio di Corso di Studio in Farmacia dal 1° novembre 2015. Vicedirettore del Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche dal 22 dicembre 2015. Componente della Giunta di Dipartimento da dicembre 2012. Presidente della Commissione Paritetica Docenti/Studenti del DiSTABiF da novembre 2013 a ottobre 2015. Componente della Commissione Elettorale Centrale (CEC) di Ateneo fino a ottobre 2015. Membro del collegio dei docenti del *Dottorato di Ricerca* in "Scienze Biomolecolari".

Attività di ricerca

L'attività di ricerca del prof. Fiorentino ha riguardato, fin dall'inizio della sua carriera, la chimica delle sostanze organiche naturali e si è concretizzata in 155 pubblicazioni su riviste a diffusione internazionale, 10 capitoli su libri a diffusione internazionale e oltre 100 comunicazioni a congressi nazionali ed internazionali. *Invited speaker* a: 5th World Congress on Allelopathy (New York, 2008), National Meeting & Exposition - Division of Agricultural & Food Chemistry dell' American Chemical Society (Boston, 2010) The Phytochemical Society of Europe Congress 2012-BIOCOM12 (Cadice, 2012) 7th World Congress on Allelopathy (Vigo, 2014).

Componente dell'editorial board delle seguenti riviste scientifiche: Food Research International (Elsevier ISSN 0963-9969), The Open Food Science Journal (Bentham Science Publisher Ltd ISSN 1874-2564), The Open Natural Product Journal (Bentham Science Publisher Ltd ISSN 1874-8481), e Journal of Allelopathic Interactions.

Referee di oltre 40 riviste scientifiche a diffusione internazionale.

Referee per la valutazione di progetti di ricerca per l'Academy of Sciences of the Czech Republic e per l'Academy of Sciences for the Developing World (TWAS).

Responsabile Scientifico/Coordinatore di progetti di ricerca finanziati dal MIUR o da altri Enti pubblici di ricerca.

Curriculum docente: dott.ssa Severina Pacifico

Attuale posizione ricoperta

La dott.ssa Severina Pacifico attualmente ricopre il ruolo di Ricercatore di *Chimica Organica* (CHIM/06) presso il Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche - DiSTABiF della Seconda Università degli Studi di Napoli.

Carriera accademica

La dott.ssa Severina Pacifico ha conseguito il titolo di Dottore di Ricerca in Scienze Chimiche presso la Seconda Università degli Studi di Napoli il 13 gennaio 2008. Il 1 dicembre 2010, in seguito a concorso, ha avuto la nomina a Ricercatore Universitario per il raggruppamento disciplinare di Chimica Organica presso la Facoltà di Scienze del Farmaco per l'Ambiente e la Salute (SUN). Nel mese di febbraio 2015 ha conseguito l'abilitazione nazionale al ruolo di professore di seconda fascia nel settore concorsuale 03/D1 (Chimica e Tecnologie Farmaceutiche, Tossicologiche e Nutraceutico-Alimentari).

Attività didattica

Dall'a.a. 2008/2009 la dott.ssa Severina Pacifico ha ricoperto vari insegnamenti del S.S.D. CHIM/06 presso il corso di

Laurea Triennale in *Scienze Biologiche* e il corso di Laurea Magistrale a ciclo unico in *Farmacia*. Attualmente è titolare degli insegnamenti di *Chimica organica II* e *Fitochimica e Farmacognosia* per il corso di laurea in Farmacia.

Attività di ricerca

L'attività di ricerca della dott.ssa Pacifico ha riguardato, fin dall'inizio della sua carriera, la chimica delle sostanze organiche naturali e si è concretizzata in 76 pubblicazioni su riviste a diffusione internazionale, 4 capitoli su libri a diffusione internazionale e comunicazioni a congressi nazionali ed internazionali. È coautrice della II edizione in italiano del testo didattico "Chimica Organica", P.Y. Bruice, EDISES Editore. Referee di oltre 30 riviste scientifiche a diffusione internazionale. Referee per la valutazione di progetti di ricerca per il National Fund for Scientific and Technological Development (FONDECYT) e per l'Israel Ministry of Science, Technology and Space.